A multiplicative multisplitting method for solving the linear complementarity problem
نویسندگان
چکیده
منابع مشابه
A multiplicative multisplitting method for solving the linear complementarity problem
The convergence of the multiplicative multisplitting-type method for solving the linear complementarity problem with an H-matrix is discussed using classical and new results from the theory of splitting. This directly results in a sufficient condition for guaranteeing the convergence of the multiplicative multisplitting method. Moreover, the multiplicative multisplitting method is applied to th...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA multisplitting method for symmetric linear complementarity problems
Over the years, many methods for solving the linear complementarity problem (LCP) have been developed. Most of these methods have their origin in solving a system of linear equations. In particular, much attention has recently been paid on the class of iterative methods called the splitting method, which is an extension of the matrix splitting method for solving a system of linear equations suc...
متن کاملA Min-Max Algorithm for Solving the Linear Complementarity Problem
Abstract The Linear Complementarity Problem ) , ( q M LCP is to find a vector x in n IR satisfying 0 x , 0 q Mx and x T (Mx+q)=0, where M as a matrix and q as a vector, are given data. In this paper we show that the linear complementarity problem is completely equivalent to finding the fixed point of the map x = max (0, (I-M)x-q); to find an approximation solution to the second problem, w...
متن کاملNonstationary Relaxed Multisplitting Methods for Solving Linear Complementarity Problems with H−matrices
In this paper we consider some non stationary relaxed synchronous and asynchronous multisplitting methods for solving the linear complementarity problems with their coefficient matrices being H−matrices. The convergence theorems of the methods are given,and the efficiency is shown by numerical tests.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2009
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.07.081